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Abstract
Single-file diffusion (SFD), prevalent in many chemical and biological
processes, refers to the one-dimensional motion of interacting particles in pores
which are so narrow that the mutual passage of particles is excluded. Since the
sequence of particles in such a situation remains unaffected over time t , this
leads to strong deviations from normal diffusion, e.g. an increase of the particle
mean-square-displacement as the square root of t . We present experimental
results of the diffusive behaviour of colloidal particles in one-dimensional
channels with varying particle density. The channels are realized by means
of a scanning optical tweezers. Based on a new analytical approach (Kollmann
2003 Phys. Rev. Lett. 90 180602) for SFD, we can predict quantitatively the
long-time, diffusive behaviour from the short time density fluctuations in our
systems.

1. Introduction

Transport phenomena are crucial for the understanding of many processes in physical,
biological and chemical systems. Often, such processes take place in narrow pores or channels
where the individual particles are not able to pass each other. The properties in such systems
are described by single-file-diffusion (SFD) and several attempts have been made to describe
the long-time behaviour of such systems. One of the most striking features of SFD compared
to normal (i.e. Fickian) diffusion is the fact that the motion of the particles at long times
takes place via a cooperative process because the displacement of a given particle over a long
distance necessitates the motion of many other particles in the same direction. This correlation
is reflected in the long-time behaviour of the mean square displacement W (t) which has been
predicted for an infinite system and for times t larger than the direct interaction time τ (i.e. the
time a particle needs to move a significant fraction of the mean particle distance) to be [2–6]

lim
t�τ

W (t) = F
√

t (1)

where F is the SFD mobility.
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Experimental evidence for such a behaviour became only recently possible due to the
fabrication of artificial crystalline zeolitical structures which are believed to comprise an almost
ideal test ground for the study of SFD. However, although some groups found SFD by using
pulsed force gradient nuclear magnetic resonance (PFG-NMR) [10] and quasi-elastic neutron
scattering techniques (QENS) [11], these results were partially questioned by other studies
which indicate normal diffusion. This discrepancy is probably due to small deviations of the
structure of the zeolites from an ideal, homogeneous nanoporous network. In addition, particle
interaction across adjacent pores has been reported which would also lead to deviations from
equation (1) [12, 13].

In order to rule out the above mentioned ambiguities, two different groups, Lin et al [14]
and Wei et al [15] studied SFD in mesoscopic colloidal systems. In order to provide channel
structures, they used topographical channels fabricated by means of photolithography. The
particle positions were monitored with video microscopy and allowed to obtain the microscopic
information of the system (in contrast to the PFG-NMR and QENS experiments where only
ensemble averages could be measured). While Lin et al concentrated on the short time
behaviour (t � τ ) and indeed found the expected normal diffusion, Wei et al confirmed
for the first time unambiguously the predicted t1/2-behaviour at long times.

While most of the results for SFD are limited to hard-rod systems [7–9],only recently has it
been demonstrated by one of us that equation (1) remains valid for colloidal and atomic systems
with arbitrary interaction potentials, provided the correlation length between the particles is of
finite range and collisions are associated with some energy dissipation [1]. In addition, it was
shown that the SFD-mobility F can be determined by the compressibility and the short-time
collective diffusion coefficient of the system. This is an interesting result, because it relates in
a unique way a long-time feature, i.e. the SFD mobility, to the short-time collective diffusional
properties of the system.

The purpose of this paper is to test this prediction by performing an experiment which
covers both time regimes, i.e. the short-time and the long-time properties. This allows us
to compare the SF mobilities F obtained at short times [1] with the results obtained at long
times according to equation (1). The experiments were performed with colloidal particles
but in contrast to earlier experiments we did not use topographical channels because this
largely reduces the diffusion constants due to hydrodynamic interactions and thus increases the
measuring times. Instead we created one-dimensional channels with scanned optical tweezers
where such hydrodynamical effects are largely reduced (not absent). Our results clearly resolve
the transition from normal diffusion at short times to the predicted t1/2 long time behaviour
of the MSD. We also compared the measured SFD-mobility with the corresponding value as
obtained from the initial decay of the dynamic structure factor S(q, t) and find good agreement
with recent theoretical predictions [1].

2. Method

As a colloidal system we used a highly diluted aqueous suspension of sulphate-terminated
polystyrene (PS) particles of 2.9 µm diameter with an average polydispersity below 4% (IDC).
The experimental setup was composed of a silica glass cuvette with 200 µm spacing, which
was connected to a standard deionization circuit [16] (see figure 1). Prior to inserting colloidal
particles into the cell the water in the whole circuit was fully de-ionized (corresponding to an
ionic conductivity below 0.07 µS cm−1). The experiments were performed at 294 ± 0.5 K.
When the cell was disconnected from the circuit, stable conditions during several hours were
maintained. The confinement of the particles to 1D channels was achieved with an optical
tweezer setup which provided a stable trapping potential for the colloids [17]. In order to
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Figure 1. Schematic representation of the experimental setup.
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Figure 2. Average particle displacement along the circumference of the circle for different particle
densities: 0.099 µm−1 (⊗), ρ = 0.103 µm−1 (�), 0.147 µm−1 (�), 0.156 µm−1 (•), 0.168 µm−1

(�), 0.185 µm−1 (◦) and 0.203 µm−1 (�).

create ring-shaped channel structures, a laser beam (λ = 532 nm) was deflected from a pair of
computer-controlled galvanostatic driven mirrors and focused into the sample cell where the
beam created a ring-shaped light pattern. The laser was circularly polarized by a quarter-wave
plate which reduced any residual inhomogeneity of the laser intensity along the circular path
to about 3%. The repetition rate of the circular pattern was about 300 Hz which should be
fast enough to provide a quasi-static circular optical trap for the particles [18]. To rule out
any residual light-induced drifts due to the scanning laser tweezer, we calculated for all our
measurements the average particle displacement 〈�x(t)〉 (see figure 2) along the circle. As
can be seen, the displacements are very small, not exceeding about 1/3 of a particle diameter
in half an hour. In addition, the sign of 〈�x(t)〉 is independent of the laser scanning direction
(which was kept constant during the measurements). This rules out drift effects induced by
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Figure 3. Example of an average light potential, perpendicular to the scanning direction, sampled
by the particles due to Brownian motion.

the scanning laser beam as they were observed by other authors [18]. From a linear fit of the
curves of figure 2 we obtain an averaged drift rate of about ±2.9 × 10−4 µm s−1 (this value is
small compared to the effects discussed in the following). From the radial particle fluctuations
we calculated via the Boltzmann statistics the radial part of the light potential as shown in
figure 3. Since the half-width of the light pattern in the radial direction corresponds to about
one particle diameter, the scanned-laser optical trap provided an effective 1D potential for
the colloids where mutual passage of particles is excluded (under the experimental conditions
radial particle fluctuations were less than one particle diameter). The depth of the light potential
was of the order of 10 kBT (corresponding to a laser power of 10–20 mW inside the cell), which
is sufficient to impede colloidal particles from escaping out of the trap during our measuring
times. Density dependent measurements were performed by variation of the radius R of the
circular optical trap (35 µm < R < 49 µm) and the number of particles N (22 < N < 45).

Because the laser tweezer was incident perpendicular from above, the particles were also
subjected to vertical light forces which pushed them toward the negatively charged silica
substrate. Therefore the system was effectively confined to two dimensions. We estimated the
effective changes in the lateral particle interaction between neighbouring particles due to the
periodically pushing light forces of the rotating laser focus. A rough calculation based on [19]
yields that this effect can be ignored in comparison to the static pair potential. To collect
colloidal particles from the highly diluted suspensions and to insert a well-defined number into
the optical circle, an additional adjustable laser tweezer was focused into the sample cell. This
tweezer also served to keep diffusing particles apart from the region where the measurements
were performed. The particle centre positions were analysed during the experiments online
with imaging processing software, which allowed us to obtain the particle trajectories.

A typical real-space configuration of 45 particles in a circular optical trap with R = 42 µm
diameter is shown in figure 4. From the particle trajectories which were recorded up to several
hours we calculated W (t) = 1

2N

∑
i 〈[xi(t + t ′) − xi(t ′)]2〉, where x corresponds to the angular

position multiplied by R, i denotes the particle index and the brackets indicate averaging over
all time steps.
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Figure 4. Image of colloidal particles which are trapped by a scanning laser beam to a circular
optical trap (the trap itself is not visible but was blocked with appropriate optical filters). The bar
corresponds to 20 µm.

1 10 100 1000

0,1

1

10

100

120 4 8 16 20 24 28

0

5

10

15

20

 W
 [

µm
2
]

 

 

t1/2 [sec]

W
(t

) 
[µ

m
2 ]

t [sec]

t

t1/2

Figure 5. Double-logarithmic plot of W for ρ = 0.103 µm−1 (�), 0.119 µm−1 (�), 0.168 µm−1

(�), 0.185 µm−1 (◦) and 0.203 µm−1 (�). The solid line with slope 1 illustrates normal diffusion
and the dotted line with slope 0.5 describes SFD. The inset shows the same data plotted as W versus√

t , with the solid lines corresponding to fits to equation (1).

3. Results

The results for W (t) are shown as symbols in figure 5 for different particle number densities
(ρ = 0.103 µm−1 (�), 0.119 µm−1 (�), 0.168 µm−1 (�), 0.185 µm−1 (◦), and 0.203 µm−1

(�)) in a log–log representation. At sufficiently short times (t < 10 s), where the individual
particles do not ‘feel’ the presence of other particles by direct interactions, normal diffusion
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Figure 6. (a) Propagator p(x, t) at four different times: t = 201 s ( ), 501 s (◦), 901 s (�).
(b) Masterplot of p(x, t) after rescaling according to equation (2).

occurs and the mean square displacement is found to be W (t) ∝ t (see solid line). This
behaviour is in good agreement with Lin et al who also studied the short-time diffusional
motion of colloidal particles in 1D channels [14]. In the case of topographically created 1D
channels, the diffusion coefficient is strongly influenced by the walls and the local particle
density ρ. This dependence on hydrodynamic boundary conditions is significantly reduced
in our system as lateral walls are absent and only the substrate determines the free diffusion
constant. With increasing time the presence of adjacent particles becomes more and more
important until eventually a crossover to a t1/2-behaviour occurs (dashed line in figure 5). In
contrast to earlier experiments [15], here both regimes are clearly resolved for the first time. It
is also seen that the crossover from normal to SFD takes place at earlier times as ρ is increased.
This is due to the fact that with increasing ρ, the clearance between adjacent particles becomes
smaller and therefore direct particle–particle interactions occur at shorter times. This crossover
is also seen by analysing the time-dependent propagator p(x, t) (see figure 6). The function
is defined as the conditional probability of finding a particle at position x after time t with the
particle located for t = 0 at x = 0. In the case of hard rods p(x, t) has been predicted for
t � τ to be [4, 9]

p(x, t) = 1√
4π Ft1/2

exp(−x2/4Ft1/2). (2)

Figure 6(a) shows the propagator for times t = 201 s ( ), 501 s (◦) and 901 s (�)
respectively. As can be seen, p(x, t) continuously decays in time. Rescaling the data according
to equation (2) as p(x, t)t1/4 versus x/t1/4 should collapse all curves onto a single master curve.
Indeed, this is in good agreement with our data (figure 6(b)).

To obtain the SFD mobility F for our data we first plotted W versus t1/2 and applied a fit
of equation (1) (see inset of figure 5). As the lower bound for the fitting range we have chosen
the direct interaction time of the particles which is of the order of 200 s. It can be clearly
seen, that above this time, all curves show a linear behaviour. The obtained values for F are
plotted in figure 7 as solid squares and show that F decreases monotonically with ρ. Such a
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Figure 7. Comparison of SFD mobilities F obtained with different methods as a function of
the particle number density ρ: F derived from fitting the MSD in figure 2 at long times ( ), F
taken from the decay of the dynamic structure factor according to equation (3) for q = 3qmin (◦),
q = 4qmin (�), q = 5qmin (�), and q = 6qmin (�). F taken from predictions of hard rod systems
at low densities [7–9] (solid line). The inset shows the decay of S(q, t) for q = 4qmin, which
follows an exponential function (solid line).

monotonic behaviour of F has also been observed for the diffusion of CF4 in AlPO4-zeolites
at low temperatures [3] and is in qualitative agreement with a theoretical expression derived
for hard rods [6]. For comparison, we also plotted in figure 7 (solid line) the prediction for
the hard rods, using the measured self-diffusion coefficient and diameter of our particles. Of
course this theory does not take into account the interaction potential of the charged particles
and overestimates their mobility.

It is important to realize that in the case of normal diffusion, the diffusion coefficient will
saturate at small ρ while in the case of SFD, even at very low ρ, no saturation of F occurs.
This emphasizes that particle–particle interactions are the limiting factor for SFD [3]. As
mentioned above, theoretical predictions for the SFD mobility F were for a long time only
available for hard rod systems where analytical expressions for the limit of small rod densities
were derived [10]. Very recently a general theory of SFD for systems of identical Brownian
particles with arbitrarily interaction potentials was developed. It has been shown [1] that the
long-time behaviour of the MSD for q � a−1 is given by

lim
t�τ

W (t) = S(q, t = 0)

ρ

√
Deff(q)t

π
. (3)

Here S(q, t = 0) is the static structure factor and Deff(q) the collective diffusion coefficient
which can be experimentally determined by a short-time measurement of the dynamic structure
factor S(q, t) = 1

N

∑N
i, j=1〈exp(iq[ri(0)−r j (t)])〉. For small wavevectors q � a−1 and t < τ ,

with a being the mean particle distance and hydrodynamic interactions (HI) neglected or treated
in a pair wise fashion, S(q, t) is given by S(q, t) = S(q, 0) exp(−q2 Deff (q)t) [20]. Since
S(q, t = 0) and Deff(q) can be experimentally determined from a short-time measurement,
equation (3) predicts the long time behaviour of the MSD to be obtained already at short
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Figure 8. Real part of static structure factor S(q, t = 0) for ρ = 0.203 µm−1 (qmax = 2π/a).

times, i.e. significantly earlier than the crossover time from normal to SFD diffusion suggests
(cf figure 5). To understand this—at first glance surprising—result, one has to realize that
owing to the absence of mutual particle passages during SFD, the motion of a density wave
with q � a−1 is reflected by the trajectory of every individual particle. In contrast, when
particles can pass each other, i.e. during normal diffusion, the motion of an arbitrarily chosen
particle is decoupled from the collective motion of the system and equation (3) does not apply.

From the particle trajectories we determined the density dependent S(q, t) for t < 10 s
which is shown to be exemplarily for q = 4qmin with qmin = 1/R in the inset of figure 7
(owing to the finiteness of the system we are limited to wavevectors q > qmin = 1/R). From
the vertical axis intercept and the slope we obtain S(q, t = 0) and Deff(q) which allows

us to calculate F = S(q,0)

ρ

√
Deff (q)

π
according to equation (3). The results are plotted for

3qmin, 4qmin, 5qmin and 6qmin as open symbols in figure 7 and show good agreement with
the previously calculated values from the long-time MSD measurements (the deviations at
small ρ are probably due to the breakdown of the long wave limit q � a−1 of equation (3)).
This result demonstrates the validity of equation (3) even in the case of finite systems as used
here. This indicates that owing to the short-ranged electrostatic particle pair potential, particle
correlations within the ring-shaped channels decay on a length scale much shorter than the
perimeter of the system [21]. This is also seen by the behaviour of the static structure factor
which is plotted in figure 8. The rather horizontal slope for q → 0 resembles the behaviour of
an infinite system and thus justifies a posteriori application of equation (3). In addition, this
suggest that equation (3) is also valid in finite biological systems where the screening length
is very small.

It should be emphasized that equation (3) is very general and applies for any other stochastic
process in a many particle system as far as it remains translational invariant in space and time.

In the absence of HI (and q → 0), equation (3) simplifies to limt�τ W (t) = 1
ρ

√
S(q)Dt

π
with

D the diffusion constant of a single particle, i.e. D = const.
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4. Conclusion

We have investigated the diffusion of colloidal particles in an optically created circular trap
where the particles undergo SFD. Owing to the lack of sticking hydrodynamicconditions at the
lateral confinement walls, this allows us to observe the transition from normal to SFD diffusion.
In addition we compare the SFD mobility F obtained from long-time measurements of the
MSD with the according values as obtained from a short-time measurement of the dynamic
structure factor and find good agreement. Owing to the high flexibility of scanned optical
tweezers one can also create channels with open ends which allow other particles to diffuse
in and out. Such a situation is particularly interesting because it can serve as a model system
for catalytic reactions in zeolitic materials which are important for a number of chemical
processes [22].
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[16] Palberg T, Härtl W, Wittig U, Versmold H, Würth M and Simnacher E 1992 J. Phys. Chem. 96 8180
[17] Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S 1986 Opt. Lett. 11 288
[18] Faucheux L P, Stolovitzky G and Libchaber A 1995 Phys. Rev. E 51 5239
[19] Squires T M and Brenner M P 2000 Phys. Rev. Lett. 85 4976
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